مشخصات پژوهش

صفحه نخست /Fabrication and ...
عنوان Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporatedwith nanocrystalline β-tricalciumphosphate (β-TCP) particleswere tailor made as scaffolds for bone tissue engineering. β- TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogelswas investigated. Itwas found that the homogeneous distribution of β-TCP nanoparticles through the hydrogelmatrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRDmeasurements represente
چکیده Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporatedwith nanocrystalline β-tricalciumphosphate (β-TCP) particleswere tailor made as scaffolds for bone tissue engineering. β- TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogelswas investigated. Itwas found that the homogeneous distribution of β-TCP nanoparticles through the hydrogelmatrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRDmeasurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/β-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.
پژوهشگران عرفان دشتی مقدم (نفر ششم به بعد)، حسن عادلی (نفر پنجم)، سید محمود ربیعی (نفر چهارم)، فرحناز فهیمی پور (نفر سوم)، حامد سلیمی کناری (نفر دوم)، راحیل غفاری (نفر اول)