عنوان
|
EXISTENCE SOLUTION FOR WEIGHTED p(x)-LAPLACIAN EQUATION
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
p(x)-biharmonic, variable exponent Lebesgue space, variable exponent Sobolev space
|
چکیده
|
This paper deals with the existence solution for the following type of boun- dary value problems: { Δ ( jxjp(x) jΔujp(x)2 Δu ) = jujq(x)2 u; in Ω; u = Δu = 0; on @Ω; where Ω is a smooth bounded domain in ℜN. It is established for a negative , there exists at least one weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces and a variant of the Mountain Pass theorem.
|
پژوهشگران
|
حسین جعفری (نفر سوم)، محسن علیمحمدی (نفر دوم)، سید ربیع موسویان خطیر (نفر اول)
|