1403/03/31
سمیه نعمتی

سمیه نعمتی

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم ریاضی
نشانی:
تلفن: 01135302419

مشخصات پژوهش

عنوان
Numerical Method Based on the Jacobi Polynomials to Reconstruct an Unknown Source Term in a Time Fractional Diffusion-wave Equation
نوع پژوهش
JournalPaper
کلیدواژه‌ها
inverse source problem, Jacobi polynomials, Caputo's fractional derivative, time fractional diffusion-wave equation, Tikhonov regularization.
سال
2019
مجله TAIWANESE JOURNAL OF MATHEMATICS
شناسه DOI
پژوهشگران Somayeh Nemati ، Afshin Babaei

چکیده

In this paper, we consider an inverse problem of identifying an unknown time dependent source function in a time-fractional diffusion-wave equation. First, some basic properties of the shifted Jacobi polynomials (SJPs) are presented. Then, the analytical solution of the direct problem is given and used to obtain an approximation of the unknown source function in a series of SJPs. Due to ill-posedness of this inverse problem, the Tikhonov regularization method with Morozov's discrepancy principle criterion is applied to nd a stable solution. After that, an error bound is obtained for the approximation of the unknown source function. Finally, some numerical examples are provided to show e ectiveness and robustness of the proposed algorithm.