Research Info

Home /Molecular Dynamic Simulation ...
Title Molecular Dynamic Simulation of Dicationic Ionic Liquids: Effects of Anions and Alkyl Chain Length on Liquid Structure and Diffusion
Type JournalPaper
Keywords Molecular Dynamic ,Dicationic Ionic Liquids
Abstract Structures and dynamics of nine geminal dicationic ionic liquids (DILs) Cn(mim)2X2, where n = 3, 6, and 9 and X = PF6−, BF4−, and Br−, were studied by molecular dynamic simulations (J. Phys. Chem. B 2004, 108, 2038−2047). A force field with a minor modification for C3(mim)2 × 2 was adopted for the simulations. Densities, detailed microscopic structures, mean-square displacements (MSD), and self-diffusivities for various ion pairs from MD simulations have been presented. The calculated densities for C9(mim)2X2 (X = Br− and BF4−) agreed well with the experimental values. The calculated RDFs show that anions are well organized around the imidazolium rings. The calculated RDFs indicate that, unlike the mono cationic ILs, the anions and cations in DILs distribute homogeneously. Enthalpies of vaporization were calculated and correlated with the structural features of DILs. The local structure of C9(mim)2X2 (X = Br, PF6) was examined by the spatial distribution function (SDF). The calculated SDFs show that similar trends were found by other groups for mono cationic ionic liquids (ILs). The highest probability densities are located around the imidazolium ring hydrogens. The calculated diffusion coefficients show that the ion diffusivities are 1 order of magnitude smaller than that of the mono cationic ionic liquids. The effects of alkyl chain length and anion type on the diffusion coefficient were also studied. The dynamics of the imidazolium rings and the alkyl chain in different time scales have also discussed. The calculated transference numbers show that the anions have the major role in carrying the electric current in a DIL.
Researchers Davood Farmanzadeh (Third Researcher), Azim Soltanabadi (Second Researcher), Saeid Yeganegi (First Researcher)