عنوان
|
تشخیص آفت حلزون در باغ مرکبات تحت شرایط نورپردازی متفاوت با استفاده از شبکه های عصبی عمیق
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
مرکبات|آفت حلزون|تشخیص هوشمند|پردازش تصویر|یادگیری عمیق ،
|
چکیده
|
دفع آفات و امراض جزء مهمترین عملیات در مرحله داشت مرکبات محسوب می شود. امروزه تحقیقات زیادی در زمینه تشخیص آفات و بیماری های گیاهی با به کارگیری روش های ماشین بینایی انجام شده است. یکی از مشکلاتی که باعث کاهش دقت ماشین برای تشخیص آفات در شرایط مزرعه ای می شود، وجود عوامل نامساعد از قبیل سایه و تغییرات شدت نور در ساعات مختلف روز می باشد. در این پژوهش به منظور یافتن شدت نور مناسب در ساعات مختلف روز از نورپردازی به وسیله یک لامپ در محل تصویربرداری استفاده شده است. برای تشخیص درختان آلوده به آفت حلزون از روش یادگیری عمیق با سه نوع الگوریتم بهینه ساز نسبتا قوی یعنی RMSProp، Adam و SGDm استفاده شد. برای بررسی و آزمون الگوریتم های مورد استفاده، تعداد 8000 تصویر در 9 شرایط مزرعه ای و یک حالت آزمایشگاهی مورد بررسی قرار گرفت. در شرایط مزرعه ای، کمترین مقدار دقت تشخیص الگوریتم ها با 32/64 درصد مربوط به تصویربرداری در روز ابری با شدت نور 350 الی 700 لوکس و با استفاده ازالگوریتم RMSPropحاصل شد، ولی با ایجاد شدت نور کنترل شده به وسیله لامپ (تقربیا 9000 لوکس)، دقت تشخیص با استفاده از الگوریتم SGDm تا 25/95 درصد بهبود یافت. در شرایط آزمایشگاهی که تصاویر در محیطی کنترل شده با شدت نور ثابت تهیه شده بود، استفاده از الگوریتم SGDm، دقت تشخیص را تا مقدار 73/98 درصد ارتقاء داد.
|
پژوهشگران
|
ایمان اسماعیلی پایین افراکتی (نفر چهارم)، سجاد سبزی (نفر سوم)، عزت الله عسکری اصلی ارده (نفر دوم)، رمضان هادی پور رکنی (نفر اول)
|