مشخصات پژوهش

صفحه نخست /NEW BOUNDS ON THE SIGNED ...
عنوان NEW BOUNDS ON THE SIGNED TOTAL DOMINATION NUMBER OF GRAPHS
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها open packing, signed total domination number, total limited packing, tuple total domination number.
چکیده In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Tur\'{a}n \cite{t}, we present a sharp lower bound on $K‎_{r+1}‎$-free graphs for $r‎\geq2‎$. Applying the concept of total limited packing we bound the signed total domination number of $G$ with $‎\delta(G)‎\geq3‎‎$ from above by $n-2‎\lfloor‎\frac{2‎\rho‎_{o}(G)‎‎+‎\delta-3‎}{2}‎‎\rfloor‎‎‎$. Also, we prove that $\gamma_{st}(T)‎\leq n-2(s-s')‎$ for any tree $T$ of order $n$, with $s$ support vertices and $s'$ support vertices of degree two. Moreover, we characterize all trees attaining this bound.
پژوهشگران لوتز ولکمن (نفر چهارم)، بابک صمدی (نفر سوم)، سید مهدی حسینی مقدم (نفر اول)، دوستعلی مژده (نفر دوم)