عنوان
|
EXISTENCE OF INFINITELY MANY SOLUTIONS FOR QUASILINEAR PROBLEMS WITH p(x)-BIHARMONIC OPERATOR
|
نوع پژوهش
|
مقاله چاپ شده
|
کلیدواژهها
|
Ricceri's variational principle; infinitely many solutions; Navier condition; p(x)-biharmonic operator.
|
چکیده
|
By using critical point theory, we establish the existence of in- nitely many weak solutions for a class of Navier boundary-value problem depending on two parameters and involving the p(x)-biharmonic operator. Under an appropriate oscillatory behaviour of the nonlinearity and suitable assumptions on the variable exponent, we obtain a sequence of pairwise distinct solutions.
|
پژوهشگران
|
قاسم علیزاده افروزی (نفر اول)، سعید شکوه (نفر دوم)
|