چکیده
|
Recently, seismic hazard analysis has become a very significant issue. New systems and available data have been also developed that could help scientists to explain the earthquakes phenomena and its physics. Scientists have begun to accept the role of uncertainty in earthquake issues and seismic hazard analysis. However, handling the existing uncertainty is still an important problem and lack of data causes difficulties in precisely quantifying uncertainty. Ground Motion Prediction Equation (GMPE) values are usually obtained in a statistical method: regression analysis. Each of these GMPEs uses the preliminary data of the selected earthquake. In this paper, a new fuzzy method was proposed to select suitable GMPE at every intensity (earthquake magnitude) and distance (site distance to fault) according to preliminary data aggregation in their area using cut. The results showed that the use of this method as a GMPE could make a significant difference in probabilistic seismic hazard analysis (PSHA) results instead of selecting one equation or using logic tree. Also, a practical example of this new method was described in Iran as one of the world`s earthquake-prone areas.
|