مشخصات پژوهش

صفحه نخست /Applying a hypergraph to ...
عنوان Applying a hypergraph to determine the structure of some finite modules
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها Hyperedge · Hypergraph · Intersection hypergraph · Maximal submodule
چکیده Characterization of a finite module with specified number of nontrivial submodules is one of the most important issues for researchers in module theory. In this paper, we will try to characterize a module with three or four nontrivial submodules by defining a new hypergraph on that module. Suppose that K is a module over a ring R. We introduce IHR(K) which we call intersection hypergraph of K. Any hyperedge in IHR(K), forms a complete subgraph of the complement of intersection graph of a module.Acharacterization of a finite modulewith exactly three nontrivial submodules via their associated hypergraphs are also presented. We provide a characterization of finite semisimple modules with exactly four nontrivial submodules in terms of their corresponded hypergraph. Some interesting examples are also included.
پژوهشگران مرتضی نوروزی (نفر دوم)، علیرضا منیری حمزه کلایی (نفر اول)