18 خرداد 1402
سميه نعمتي

سمیه نعمتی

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن: 01135302419
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Atangana–Baleanu derivative, Operational matrix, Non-singular kernel, Mittag-Leffler function, Genocchi polynomials
مجله CHAOS SOLITONS & FRACTALS
شناسه DOI 10.1016/j.chaos.2020.109736
پژوهشگران سیده صدیقه صادقی (نفر اول) ، حسین جعفری (نفر دوم) ، سمیه نعمتی (نفر سوم)

چکیده

Recently, Atangana and Baleanu have defined a new fractional derivative which has a nonlocal and non-singular kernel. It is called the Atangana–Baleanu derivative. In this paper we present a numerical technique to obtain solution of fractional differential equations containing Atangana–Baleanu derivative. For this purpose, we use the operational matrices based on Genocchi polynomials together with the collocation points which help us to reduce the problem to a system of algebraic equations. An error bound for the error of the operational matrix of the fractional derivative is introduced. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.