18 خرداد 1402
سميه نعمتي

سمیه نعمتی

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن: 01135302419
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Numerical Solution of Multi-Order Fractional Differential Equations Using Generalized Sine-Cosine Wavelets
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Generalized sine-cosine wavelet, Operational matrix of fractional integration, Multi-order fractional differential equations, Block-pulse functions, Operational matrix of fractional integration
مجله Universal Journal of Mathematics and Applications
شناسه DOI 10.32323/ujma.427381
پژوهشگران سمیه نعمتی (نفر اول) ، انس الحبوبی (نفر دوم)

چکیده

In this work, we propose a numerical method based on the generalized sine-cosine wavelets for solving multi-order fractional differential equations. After introducing generalized sine-cosine wavelets, the operational matrix of Riemann-Liouville fractional integration is constructed using the properties of the block-pulse functions. The fractional derivative in the problem is considered in the Caputo sense. This method reduces the considered problem to the problem of solving a system of nonlinear algebraic equations. Finally, some examples are included to demonstrate the applicability of the new approach.