One of the most useful tools in Operations Research (OR) which is essentially applied to evaluate the performance of treated Decision-Making Units (DMUs) is Data Envelopment Analysis (DEA). Because of in the current decades, DEA models have been used and extended in many disciplines and hence attracted much interests. The traditional DEA treats DMUs as black boxes and calculates their efficiencies by considering their initial inputs and their final outputs. Since, in the real situations, input data are included some uncertainties, hence in this study we consider a DEA with fuzzy stochastic data and suggest a three-stage DEA model by taking into account undesirable output. To achieve this aim, an extended probability approach is applied to the reform of three-stage DEA models. Finally, we give an illustrative example by considering a case study on the banking industry.