In producing parts using 3D printing technology, electron beam melting (EBM) has been presented as an additive manufacturing (AM) process. In producing parts using the EBM process, powder melting enabled in a high vacuum atmosphere happens simultaneously at multiple points without compromising on surface finish, precision or build speed. Heat treatments on the unique microstructure and microstructure evolution, mechanical properties of produced layers such as ultimate tensile strength (UTS) by the production method, precision mechanical systems for reducing waste materials, fatigue properties in EBM methods, study of produced parts for analyzing the corrosion resistance, analysis of Surface roughness of produced parts using EBM, applications of EBM to biomaterial products and effect of EBM parameters and porous structure on mechanical properties are considered in order to develop the EBM process. EBM is a high technology increasingly employed in different industries including bioengineering, aerospace and marine not only because of its increasing efficiency in the process of part production but also because of its time and cost-efficient accurate production results. Moreover, time and cost of accurate production can be decreased as a result of increasing efficiency in process of part production. However, despite the quantity of research in this area, there are few papers reviewing the achievements. Therefore, this paper reports on recent achievements in production of EBM processed Ti–6A1–4V parts.