For the first time the transient bending analysis of a sandwich plate with viscoelastic boundary support is investigated in this study. Viscoelastic support consists of two sets of translational springs and dashpots connected in parallel along the in-plane and transverse directions. The sandwich plate is fabricated from heterogeneous face sheets where the material properties of each face sheets are assumed to be varied continuously in the radial direction according to a power-law function. Variations of the material properties of each face sheets are monitored by eight distinct inhomogeneity parameters. Therefore, the solution procedure may be used for a wide range of the practical problems. In order to investigate the effects of viscoelastic edge supports on the transient response of sandwich plate a wide range of the stiffness and damping coefficients of the edge supports in the inplane and transverse directions are applied. Results of sandwich plates with the classical edge conditions as some special cases of the elastic/viscoelastic supports are compared with those extracted from the ABAQUS software based on the 3D theory of elasticity. The comparisons show that even for relatively complicated cases, there is a good agreement between the results.