2024 : 5 : 6
Mohammad Molla-Alipour

Mohammad Molla-Alipour

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
Faculty: Faculty of Technology and Engineering
Address: Department of Mechanical Engineering, University of azandaran, Babolsar 47416-13534, Iran
Phone: 01135305130

Research

Title
Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation
Type
JournalPaper
Keywords
Elastically restrained edge Sandwich plate Layerwise theory Functionally graded Normal and shear loads
Year
2016
Journal Archives of Civil and Mechanical Engineering
DOI
Researchers Mohammad Molla-Alipour

Abstract

In practical applications, sandwich plates are often connected to other members, supported by damaged clamped/simply supported boundary conditions or supported by elastic restraints. Therefore, the mentioned structures may not always be simulated by the classical boundary conditions, i.e., ideal simply supported, clamped and free edges. Also, these structures may be subjected to various loads. In this study, for the first time, a novel economical analytical solution procedure is presented for axisymmetric static analysis of sandwich annular plates, by using the layerwise and 3D elasticity theories. Based on the proposed approach, functionally graded sandwich annular plates with various elastically restrained edges under arbitrary distributed loads may be analyzed and all of the displace- ments and stresses components may be exactly achieved. Also, imposed loads at the boundaries may be evaluated. Transverse shear and normal stresses boundary conditions on the top and bottom of the sandwich plate and the interlaminar continuity conditions of the in-plane displacement, transverse shear and normal stresses are exactly satisfied. Accuracy and efficiency of the presented solution procedure are demonstrated by comparing the obtained results for sandwich plates with the classical edge conditions as some special cases of the elastic supports with results of the three-dimensional theory of elasticity.