08 خرداد 1402
سيدمحمدتقي كامل ميرمصطفائي

سیدمحمدتقی کامل میرمصطفائی

مرتبه علمی: دانشیار
نشانی: دانشگاه مازندران-دانشکده علوم ریاضی- گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 01135302428
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Exact prediction intervals for order statistics from the Laplace distribution based on the maximum-likelihood estimators
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Laplace distribution, exact prediction intervals, predictive likelihood function, maximumlikelihood estimators, ratios of linear combinations of exponential random variables
مجله STATISTICS
شناسه DOI 10.1080/02331888.2013.766795
پژوهشگران جورج ایلیوپولوس (نفر اول) ، سیدمحمدتقی کامل میرمصطفائی (نفر دوم)

چکیده

In this work we construct exact prediction intervals for order statistics from the Laplace (double exponential) distribution. We consider both the one- and two-sample prediction cases. The intervals are based on certain pivotal quantities that employ the corresponding maximum-likelihood predictors and the predictive maximum-likelihood estimators of the unknown parameters. Similar to Iliopoulos and Balakrishnan [Exact likelihood inference for Laplace distribution based on Type-II censored samples. J. Statist. Plann. Inference. 2011;141:1224–1239], we express the distributions of the pivotal quantities as mixtures of ratios of linear combinations of independent standard exponential random variables. Since these distributions are in closed form we solve numerically the corresponding equations and obtain their exact quantiles. Tables containing selected quantiles of the pivotal quantities are provided. Numerical examples are also given for illustration purposes.