1403/09/01
ماشاء اله متین فر

ماشاء اله متین فر

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم ریاضی
نشانی: دانشگاه مازندران، دانشکده علوم ریاضی، گروه ریاضی کاربردی.
تلفن: 35302496

مشخصات پژوهش

عنوان
Strategies for disease diagnosis by machine learning techniques
نوع پژوهش
مقاله چاپ شده
کلیدواژه‌ها
Prediction, machine learning, classification, penalized logistic Ridge regression.
سال 1402
مجله journal of mathematical modelling
شناسه DOI
پژوهشگران الهام حافظیه ، علی توکلی ، ماشاء اله متین فر

چکیده

Machine learning (ML) techniques have become a point of interest in medical research. To predict the existence of a specified disease, two methods K-Nearest Neighbors (KNN) and logistic regression can be used, which are based on distance and probability, respectively. These methods have their problems, which leads us to use the ideas of both methods to improve the prediction of disease outcomes. For this sake, first, the data is transformed into another space based on logistic regression. Next, the features are weighted according to their importance in this space. Then, we introduce a new distance function to predict disease outcomes based on the neighborhood radius. Lastly, to decrease the CPU time, we present a partitioning criterion for the data.