قطعه بندی تصاویر پزشکی یکی از پیش پردازش های اولیه لازم در طراحی سیستم های خودکار تشخیص بیماری ها به شمار می رود.تصاویر MRI مغز بدلیل وجود عوامل مخرب مصنوعی در فرایند تصویربرداری از جمله نویز و غیریکنواختی شدت روشنایی، با عدم قطعیت همراه بوده و به همین علت، قطعه بندی این تصاویر همواره از جمله مسایل چالشی به شمار می رود. با توجه به عدم قطعیت مذکور، پژوهشگران روش های فازی را در قطعه بندی MRI مغز بسیار بکار گرفته اند. یکی از روش های قطعه بندی فازی روش BCFCM می باشد که در آن از اطلاعات پیکسل های همسایه نیز برای قطعه بندی استفاده می شود. این روش پارامترهای مختلفی دارد که انتخاب نامناسب آنها به شدت از عملکرد آن می کاهد. در این مقاله یک روش، تحت دو ساختار ارائه شده است که در آن با استفاده از الگوریتم های تکاملی GA,PSO، پارامتر های الگوریتم BCFCM بهینه شده اند. نتایج شبیه سازی بر روی داده های استاندارد BrainWeb و با استفاده از معیار شباهت Dice و Tanimoto، عملکرد مناسب روش پیشنهادی را نشان می دهد.