1403/03/24
جمال قاسمی

جمال قاسمی

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده مهندسی و فناوری
نشانی:
تلفن: 01135302902

مشخصات پژوهش

عنوان
بهینه سازی الگوریتم BCFCM با GA و PSO برای قطعه بندی ام آر آی مغز
نوع پژوهش
مقاله چاپ شده
کلیدواژه‌ها
ازدحام ذرات، ام آر آی، خوشه بندی فازی، الگوریتم ژنتیک، قطعه بندی تصاویر
سال 1394
مجله رايانش نرم و فناوري اطلاعات
شناسه DOI
پژوهشگران جمال قاسمی ، ایمان ارقند

چکیده

قطعه بندی تصاویر پزشکی یکی از پیش پردازش های اولیه لازم در طراحی سیستم های خودکار تشخیص بیماری ها به شمار می رود.تصاویر MRI مغز بدلیل وجود عوامل مخرب مصنوعی در فرایند تصویربرداری از جمله نویز و غیریکنواختی شدت روشنایی، با عدم قطعیت همراه بوده و به همین علت، قطعه بندی این تصاویر همواره از جمله مسایل چالشی به شمار می رود. با توجه به عدم قطعیت مذکور، پژوهشگران روش های فازی را در قطعه بندی MRI مغز بسیار بکار گرفته اند. یکی از روش های قطعه بندی فازی روش BCFCM می باشد که در آن از اطلاعات پیکسل های همسایه نیز برای قطعه بندی استفاده می شود. این روش پارامترهای مختلفی دارد که انتخاب نامناسب آنها به شدت از عملکرد آن می کاهد. در این مقاله یک روش، تحت دو ساختار ارائه شده است که در آن با استفاده از الگوریتم های تکاملی GA,PSO، پارامتر های الگوریتم BCFCM بهینه شده اند. نتایج شبیه سازی بر روی داده های استاندارد BrainWeb و با استفاده از معیار شباهت Dice و Tanimoto، عملکرد مناسب روش پیشنهادی را نشان می دهد.