2024 : 4 : 29
Bagher Seyedalipour

Bagher Seyedalipour

Academic rank: Associate Professor
ORCID: http://orcid.org/0000-0002-3854-9328
Education: PhD.
ScopusId: https://www.scopus.com/authid/detail.uri?authorId=56725735600
Faculty: Science
Address: Department of Cellular and Molecular, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
Phone: 01135302405

Research

Title
A double point mutation of SOD1 targeting net charge promotes aggregation under destabilizing conditions: Correlation of charge distribution and ALS-provoking mutation
Type
JournalPaper
Keywords
Neurodegeneration,Protein aggregation, Amyotrophic lateral sclerosis, Net charge, Superoxide dismutase 1
Year
2023
Journal BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
DOI
Researchers Elaheh Mavadat ، Bagher Seyedalipour ، Saman Hosseinkhani

Abstract

A progressive neurodegenerative illness such as amyotrophic lateral sclerosis (ALS) is characterized by the misfolding and aggregation of human Cusingle bondZn superoxide dismutase (hSOD1) into amyloid aggregates. Thus, designing strategies for the choice of WT-SOD1 and double mutant (G12D/G138E) with an increased net negative charge can be a good idea to elucidate the pathological mechanism of SOD1 in ALS under some destabilizing conditions. Consequently, we show evidence that protein charge, together with other destabilizing conditions, plays an important role in ALS disease. To achieve this purpose, we use methods, such as spectroscopy and transmission electron microscopy (TEM) to monitor the formation of amyloid aggregation. The specific activity of WT-SOD1 was approximately 1.72 times higher than that of the double mutant. Under amyloidogenic circumstances, structural properties such as local, secondary, oligomeric, and fibrillar structures were explored. The double mutant's far-UV CD spectra displayed a broad minimum peak in the region 213 to 218 nm, suggesting the production of β-rich amyloid fibrils. FTIR spectra of the double mutant samples at different incubation times showed a low-frequency peak around 1630–1640 cm-1, attributed to a parallel β-sheet. Moreover, CR-binding assay and TEM analysis revealed and confirmed that mutation with an increased repulsive charge promotes the formation of fibrous aggregates. Consequently, ALS mutations with a higher repulsive charge are the apparent exceptions that validate the rule. This findings revealed that the double mutant increases protein aggregation through a novel mechanism, likely involving destabilization of structure and a change in the net negative charge.