Abstract
|
In this paper, samples of tantalum with purities of 99.99% (0.58 mm thickness) were implanted by Nitrogen ions. The ions’ implantation process was performed at 30 keV and also at different portions which were in the range between 1 × 1017 and 1 × 1018 ions/cm2. The electrical characteristics were investigated on tantalum nitrides and Ta structures by current–voltage. The samples’ surface morphology was also studied through the atomic force microscopy. Through the application of the X-ray diffraction technique, the microstructure of the modified surfaces was obtained after ion implantation. Results of the experiments show the formation of hexagonal tantalum nitride (TaN0.43), as well as the fact that ion dose increases, more interstitial spaces are occupied by nitrogen atoms in the target crystal. The electrical resistivity of the tantalum after nitrogen implantation is found to increase with ion doses. Experimental data demonstrated that different nitrogen dose in ion beam powerfully affects microstructure, phase formation, surface morphology and resistivity of the tantalum. The changes in nitrogen ions were found to be responsible for variation in the resistivity values.
|