Title
|
A novel, effective and low cost catalyst for methanol oxidation based on nickel ions dispersed onto poly(o-toluidine)/Triton X-100 film at the surface of multi-walled carbon nanotube paste electrode
|
Type
|
JournalPaper
|
Keywords
|
Triton X-100, Poly(o-toluidine), Methanol oxidation, Nickel(II) ions, Multi-walled carbon nanotube paste electrode
|
Abstract
|
In this work, for the first time an aqueous solution of Triton X-100 (TX-100) [t-octyl phenoxy polyethoxy ethanol] non-ionic surfactant is used as an additive for electropolymerization ofo-toluidine (OT) onto multi-walled carbon nanotube paste electrode (CNTPE), which is investigated as a novel matrix for dispersion of nickel ions. The growth of polymeric film in the absence of TX-100 is poor, while it considerably increases in the presence of the surfactant and its growth is continued up to 60th cycle. The as-prepared substrate is used as porous matrix for dispersion of transition metal ions of Ni(II) to POT/TX-100 film by immersing the modified electrode in a 0.1 M nickel sulfate solution. The electrochemical characterization of this modified electrode exhibits redox behavior of Ni(III)/Ni(II) couple. It has been shown that POT/TX-100 at the surface of CNTPE improves catalytic efficiency of the dispersed nickel ions toward methanol oxidation. Then, using a chronoamperometric method, the catalytic rate constant,k, for methanol oxidation is found to be 7.40×10 4cm 3 mol−1 s −1 . At the end of this work, long-term stability of this modified electrode has been investigated
|
Researchers
|
Sayed Reza Hosseini (Third Researcher), Reza Ojani (Second Researcher), Jahan Bakhsh Raoof (First Researcher)
|