Research Info

Home /Sol-gel synthesis, ...
Title Sol-gel synthesis, characterization, and electrochemical evaluation of magnesium aluminate spinel nanoparticles for high-capacity hydrogen storage
Type JournalPaper
Keywords MgAl2O4 Nanoparticles Sol-gel Stearic acid Hydrogen storage
Abstract In this research, we successfully synthesized magnesium aluminate (MgAl2O4 ) spinel nanoparticles using a sol-gel process, with stearic acid serving as a capping agent. The synthesis process involved calcination at 900 °C for 4 h, resulting in the formation of nanoparticles with an average crystallite size of approximately 12 nm, as determined through Debye – Scherrer analysis and X-ray diffraction (XRD) data. The optical band gap was measured as 2.84 eV using Diffuse Reflectance Spectroscopy (DRS) analysis. Additionally, we found the mean pore size of the nanoparticles to be 20.2 nm through Brunauer – Emmett – Teller (BET) analysis. We characterized the resulting powders using various techniques, including Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy- Dispersive X-ray Spectroscopy (EDS), and Vibrating Sample Magnetometry (VSM). We conducted electrochemical investigations utilizing the Chronopotentiometry (CP) technique. The electrochemical analysis demonstrated that MgAl2O4 spinel nanoparticles exhibit a noteworthy hydrogen storage capacity of 4000 mAh/g, highlighting their potential as promising candidates for hydrogen storage applications. This comprehensive study underscores the successful synthesis, thorough characterization, and exceptional electrochemical performance of MgAl2O4 spinel nanoparticles, firmly positioning them as valuable materials for advancing hydrogen storage technologies.
Researchers Morteza Enhessari (Fifth Researcher), Maryam Karimi (Fourth Researcher), Maryam Shaterian (Third Researcher), Salahaddin Abdollah Lachini (Second Researcher), Abbas Eslami (First Researcher)