Abstract
|
Fuzzy graphs have a prominent place in the mathematical modelling of the problems due to the simplicity of representing the relationships between topics. Gradually, with the development of science and in encountering with complex problems and the existence of multiple relationships between variables, the need to consider fuzzy graphs with multiple relationships was felt. With the introduction of the graph structures, there was better flexibility than the graph in dealing with problems. By combining a graph structure with a fuzzy graph, a fuzzy graph structure was introduced that increased the decision-making power of complex problems based on uncertainties. The previous definitions restrictions in fuzzy graphs have made us present new definitions in the fuzzy graph structure. The domination of fuzzy graphs has many applications in other sciences including computer science, intelligent systems, psychology, and medical sciences. Hence, in this paper, first we study the dominating set in a fuzzy graph structure from the perspective of the domination number of its fuzzy relationships. Likewise, we determine the domination in terms of neighborhood, degree, and capacity of vertices with some examples. Finally, applications of domination are introduced in fuzzy graph structure
|