June 10, 2023
Doost Ali Mojdeh

Doost Ali Mojdeh

Degree: Professor
Address: Department of Mathematics, University of Mazandaran, Babolsar, Iran
Education: Ph.D in Mathematics (Graph Theory and Combinatorics)
Phone: 011-35302448
Faculty: Faculty of Mathematical Sciences

Research

Title Neighborhood Total Domination and Maximum Degree in Triangle-Free Graphs
Type Article
Keywords
Domination, Total domination, Neighborhood total domination.
Journal UTILITAS MATHEMATICA
DOI این مجله JCR است ولی چاپ فقط کاغذی دارد. بنابراین
Researchers Michael A. Henning (First researcher) , Doost Ali Mojdeh (Second researcher) , Mohammad Reza Sayed Salehi (Third researcher)

Abstract

In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [Opuscula Math. 31 (2011), 519--531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph $G$ is a dominating set $S$ in $G$ with the property that the subgraph induced by the open neighborhood of the set $S$ has no isolated vertex. The neighborhood total domination number, denoted by $\gnt(G)$, is the minimum cardinality of a NTD-set of $G$. Every total dominating set is a NTD-set, implying that $\gamma(G) \le \gnt(G) \le \gt(G)$, where $\gamma(G)$ and $\gt(G)$ denote the domination and total domination numbers of $G$, respectively. Arumugam and Sivagnanam showed that if $G$ is a connected graph on $n$ vertices with maximum degree~$\Delta < n-1$, then $\gnt(G) \le n - \Delta$ and pose the problem of characterizing the graphs $G$ achieving equality in this bound. We provide a complete solution to this problem for triangle-free graphs and a characterization for general graphs involving the packing number.