June 10, 2023
Doost Ali Mojdeh

Doost Ali Mojdeh

Degree: Professor
Address: Department of Mathematics, University of Mazandaran, Babolsar, Iran
Education: Ph.D in Mathematics (Graph Theory and Combinatorics)
Phone: 011-35302448
Faculty: Faculty of Mathematical Sciences

Research

Title Dominated Coloring of Certain Graphs
Type Article
Keywords
Dominated coloring, Dominated chromatic covering, Dominated chromatic covering number
Journal global analysis and discrete mathematics
DOI 10.22128/gadm.2022.624.1081
Researchers Fatemeh Choopani (First researcher) , Abbas Jafarzadeh (Second researcher) , Doost Ali Mojdeh (Third researcher)

Abstract

A proper coloring of a graph G is called a dominated coloring whenever each color class is dominated by at least one vertex. The minimum number of colors among all dominated colorings of G is called its dominated chromatic number, denoted by χdom(G). We define a parameter related to dominated coloring, namely dominated chromatic covering. For a minimum dominated coloring of G, a set of vertices S is called a dominated chromatic covering if each color class is dominated by a vertex of S. The minimum cardinality of a dominated chromatic covering of G is called its dominated chromatic covering number, denoted by θχdom(G). It is clear that θχdom(G) ≤ χdom(G). In this paper, we obtain the dominated chromatic number and θχdom(G) when G is middle and total graph of paths and cycles.