This paper presents line search algorithms for finding extrema of locally Lipschitz functions defined on Riemannian manifolds. To this end we generalize the so-called Wolfe conditions for nonsmooth functions on Riemannian manifolds. Using "-subgradient-oriented descent directions and the Wolfe conditions, we propose a nonsmooth Riemannian line search algorithm and establish the convergence of our algorithm to a stationary point. Moreover, we extend the classical BFGS algorithm to nonsmooth functions on Riemannian manifolds. Numerical experiments illustrate the effectiveness and effciency of the proposed algorithm.