2024 : 11 : 21
mahmood tajbakhsh

mahmood tajbakhsh

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Chemistry
Address: /Faculty of chemistry- University of Mazandaran- Babolsar- Iran
Phone: 09111146981

Research

Title
Design, Synthesis and Photophysical Analysis of New Unsymmetrical Carbazole-Based Dyes for Dye-Sensitized Solar Cells
Type
JournalPaper
Keywords
Dye-sensitized solar cell (DSSC); Carbazole; 4-aminobenzoic acid; Cyanoacetic acid; Malonic acid
Year
2020
Journal JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY
DOI
Researchers Faegheh Ghasempour Nesheli ، mahmood tajbakhsh ، behzad hosseinzadeh ، Rahman Hosseinzadeh

Abstract

The molecular design, synthesis, and characterization of di-anchoring carbazole-based dyes (Car-Cy, Car-Amin, and Car-Mal) with A-π-D-π-A-π-A structure as materials for dye-sensitized solar cells applications (DSSCs) are reported. The electron-rich carbazole moiety in the structure of synthesized dyes is connected with acceptor/ or anchoring groups (cyanoacetic acid, 4-aminobenzoic acid, and malonic acid) and π-spacers (vinylene and cynovinyl thiophene). Electronic characteristics and molecular geometry of the sensitizers were optimized using Density Functional Theory (DFT), and the influence of dye structure on their photovoltaic performances was studied. Among the synthesized dyes in this research, Car-Amin dye presents a better photovoltaic performance as a sensitizer in the constructed device, with a power conversion efficiency (PCE) of 2.27%, JSC of 5.95 mAcm−2, VOC of 0.54 V and FF of 71%. The enhanced performance of this dye could be related to the powerful electron-withdrawing characteristic of the 4-aminobenzoic acid as an acceptor group in the dye structure. Consequently, the impact of various acceptor groups on the constructed DSSC devices was examined, and the results indicated that the improvement