18 خرداد 1402
سميه نعمتي

سمیه نعمتی

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن: 01135302419
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Integro-diferential equations, Multi-variable order, The Bernstein polynomials, Operational matrix, Collocation points
مجله ENGINEERING WITH COMPUTERS
شناسه DOI 10.1007/s00366-020-01142-4
پژوهشگران گوین هوی توآن (نفر اول) ، سمیه نعمتی (نفر دوم) ، رقیه معلم گنجی (نفر سوم) ، حسین جعفری (نفر چهارم)

چکیده

Integro-differential equations are developed as models in enormous fields of engineering and science such as biological models, population growth, aerospace systems and industrial mathematics. In this work, we consider a general class of nonlinear fractional integro-differential equations with variable order derivative. We use the operational matrices based on the Bernstein polynomials to obtain numerical solution of this type of equations. By utilizing the operational matrices along with the Newton–Cotes collocation points, the problem under study is reduced to a system of nonlinear algebraic equations. An error estimate of the numerical solution is proved. Finally, some examples are included to show the accuracy and validity of the proposed method.