18 خرداد 1402
سميه نعمتي

سمیه نعمتی

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن: 01135302419
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Functional integral equationsVolterra–Urysohn integral equations, Picard iterative method, Gronwall inequality, Euler method, Trapezoidal method
مجله JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
شناسه DOI 10.1016/j.cam.2021.113628
پژوهشگران سهراب بزم (نفر اول) ، پدرو لیما (نفر دوم) ، سمیه نعمتی (نفر سوم)

چکیده

In this paper, we investigate nonlinear functional Volterra–Urysohn integral equations, a class of nonlinear integral equations of Volterra type. The existence and uniqueness of the solution to the equation is proved by a technique based on the Picard iterative method. For the numerical approximation of the solution, the Euler and trapezoidal discretization methods are utilized which result in a system of nonlinear algebraic equations. Using a Gronwall inequality and its discrete version, first order of convergence to the exact solution for the Euler method and quadratic convergence for the trapezoidal method are proved. To prove the convergence of the trapezoidal method, a new Gronwall inequality is developed. Finally, numerical examples show the functionality of the methods.