Functionalized nanocellulose was prepared and employed for immobilization of phenanthroline-copper(I) complex to afford cellulose nanofibril grafted heterogeneous copper catalyst [CNF-phen-Cu(I)]. This nanocatalyst was well characterized using FT-IR, NMR, XRD, CHNS, AAS, TGA, EDX and SEM. The activities of the synthesized catalyst were examined in the synthesis of diaryl ethers via C-O cross-coupling of phenols and aryl iodides, as well as, the preparation of N-aryl amides and N-aryl heterocycles through C-N cross-coupling of amides and N-H heterocycle compounds with aryl halides. In this trend, various substrates containing electrondonating and electron-withdrawing groups were exploited to evaluate the generality of this catalytic protocol. Accordingly, the catalyst demonstrated remarkable catalytic efficiency for both C-N and C-O cross-coupling reactions, thereby resulting in good to excellent yields of the desired products. Furthermore, the recoverability experiments of the catalyst showed that it can be readily retrieved by simple filtration and successfully reused several times with negligible loss of its catalytic activity.