In this paper, we study projective algebra, p(M, F), of special (α, β)-metrics. The projective algebra of a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket. We characterize p(M, F) of Matsumoto and square metrics of isotropic S-curvature of dimension n ≥ 3 as a certain Lie sub-algebra of the Killing algebra k(M, α). We also show that F has a maximum projective symmetry if and only if F either is a Riemannian metric of constant sectional curvature or locally Minkowskian.