Single-particle entanglement entropy (SPEE) is calculated for entanglement Hamilto- nian eigenmode in a one-dimensional free fermion model that undergoes a delocalized– localized phase transition. In this numerical study, we show that SPEE of entanglement Hamiltonian eigenmode has the same behavior as SPEE of Hamiltonian eigenmode at the Fermi level: as we go from delocalized phase toward localized phase, SPEE of both modes decrease in the same manner. Furthermore, fluctuations of SPEE of entanglement Hamiltonian eigenmode — which can be obtained through the calculation of moments of SPEE — signature very sharply the phase transition point. These two modes are also compared by calculation of single-particle Rényi entropy (SPRE). We show that SPEE and SPRE of entanglement Hamiltonian eigenmode can be used as phase detection parameters.