In this article, the sine-Gordon expansionmethod is employed to find some new traveling wave solutions to the nonlinear Schrödinger equation with the coefficients of both group velocity dispersion and second-order spatiotemporal dispersion. The nonlinear model is reduced to an ordinary differential equation by introducing an intelligible wave transformation. A set of new exact solutions are observed corresponding to various parameters. These novel soliton solutions are depicted in figures, revealing the new physical behavior of the acquired solutions. The method proves its ability to provide good new approximate solutions with some applications in science. Moreover, the associated solution of the presented method can be extended to solve more complex models.