2024 : 4 : 29
Mahdi Nematzadeh

Mahdi Nematzadeh

Academic rank: Professor
ORCID: 0000-0002-8065-0542
Education: PhD.
ScopusId: 36198613700
Faculty: Faculty of Technology and Engineering
Address:
Phone: 011-35302903

Research

Title
Compressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST
Type
JournalPaper
Keywords
Elevated temperaturesHigh-strength concreteConcrete coreSteel fibersCrumb rubberConcrete-filled steel tubeWaste materialsCompressive behaviorUltrasonic pule velocity
Year
2020
Journal CONSTRUCTION AND BUILDING MATERIALS
DOI
Researchers Mahdi Nematzadeh ، saber fallah ، Amirhossein Karimi

Abstract

In this study, the compressive behavior of concrete cores detached from the high-strength concrete-filled steel tube (CFST) members reinforced with steel fibers and containing crumb tire rubber was investigated experimentally after exposure to elevated temperatures. The test variables included the diameter-to-thickness ratio of the steel tube, volume content of crumb rubber replacing natural sand, volume fraction of steel fibers, and temperature. After the exposure of the CFST specimens to the elevated temperatures and subsequently removing the steel tubes, the detached concrete core was subjected to the axial compression test, and the parameters of compressive strength, modulus of elasticity, strain at peak stress, and weight loss, stress-strain relationship together with the ultrasonic pulse velocity, visual appearance, and failure mode were evaluated. Using the experimental results, expressions were developed to predict the mechanical properties of the concrete core at elevated temperatures taking into account the steel tube wall thickness. The findings indicated that increasing the thickness of the steel tube had a greater damaging effect on the heated concrete core, while in the fiber-reinforced specimens, this damaging effect was lower. Moreover, the addition of crumb rubber to the concrete mix as the natural sand replacement degraded the mechanical properties of the heated and unheated concrete core.