2024 : 12 : 21
Mahdi Nematzadeh

Mahdi Nematzadeh

Academic rank: Professor
ORCID: 0000-0002-8065-0542
Education: PhD.
ScopusId: 36198613700
HIndex:
Faculty: Faculty of Technology and Engineering
Address:
Phone: 011-35302903

Research

Title
A comparative study of mechanical properties and life cycle assessment of high-strength concrete containing silica fume and nanosilica as a partial cement replacement
Type
JournalPaper
Keywords
Life cycle assessment Nanosilica High-strength concrete Environmental impacts Prediction Cement replacement Microstructural behavior
Year
2022
Journal Structures
DOI
Researchers saber fallah ، Reza Mousavi ، Arash Arjomandi ، Mahdi Nematzadeh ، Mostafa Kazemi

Abstract

Employing pozzolanic materials like nanosilica and silica fume as replacements for cement to produce highstrength concrete (HSC) has made investigating the mechanical features of the produced HSC and assessing impacts that producing these materials have on the environment a necessity. Therefore, this paper aimed to assess the mechanical properties, environmental impacts and life cycle of HSC containing silica fume and nanosilica where its compressive performance and microstructure were evaluated and a comparison between the effects of pozzolanic materials were compared with those of ordinary cement on environmental indices. Concrete specimens were made using seven mix designs, and different parameters, namely compressive capacity, toughness, strain at peak stress, relative energy absorption, and stress–strain relationship were evaluated. Afterward, some empirical relationships were proposed to capture concrete mechanical features. Here, silica fume at contents of 0, 8, 10, and 12 % and nanosilica at contents of 0, 1, 2, and 3 % were used as a weight replacement of cement. Further, using the atomic force microscopy (AFM) images, the microstructure of the concrete without the pozzolans and concretes with silica fume and nanosilica was studied. In addition, to investigate the environmental impacts of the concretes containing silica fume and nanosilica and conventional concrete, two methods of problem-oriented CML 2000 and damage-oriented IMPACT 2002+ were employed in SimaPro8.1 program. In this procedure, environmental parameters including acidification, eutrophication, global warming potential (GWP), human health, and ecosystem quality, and natural resources were investigated. Finally, for validation, all the obtained results were compared with those obtained using the building for environmental and economic sustainability (BEES) approach. It was found that the best weight percentages of silica fume and nanosilica replacing cement were 12 and 2 %, respectively, which