08 خرداد 1402
سيدمحمدتقي كامل ميرمصطفائي

سیدمحمدتقی کامل میرمصطفائی

مرتبه علمی: دانشیار
نشانی: دانشگاه مازندران-دانشکده علوم ریاضی- گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 01135302428
دانشکده: دانشکده علوم ریاضی

مشخصات پژوهش

عنوان Estimation of P(X > Y) for the power Lindley distribution based on progressively type II right censored samples
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Bayesian estimation, loss function, Metropolis-Hastings within Gibbs algorithm, progressive censoring
مجله JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
شناسه DOI 10.1080/00949655.2019.1685994
پژوهشگران ابوالفضل جوکار (نفر اول) ، معصومه رمضانی (نفر دوم) ، سیدمحمدتقی کامل میرمصطفائی (نفر سوم)

چکیده

In this study, we discuss the problem of estimating ρ = P(X > Y), when X and Y are two independent power Lindley random variables, based on progressively type II right censored order statistics. The maximum likelihood estimator of ρ and its asymptotic distribution, asymptotic interval estimator of ρ, Bayesian point estimators for ρ under symmetric and asymmetric loss functions as well as credible intervals for ρ are achieved when X and Y have a common parameter. Since it seems that the integrals pertaining to the Bayes estimation cannot be obtained in explicit forms, we propose the Metropolis-Hastings within Gibbs algorithm to find the approximate Bayes estimates of ρ. A simulation study is given in order to evaluate the proposed estimators and compare the different methods, developed in the paper. The corresponding results for the general case (when X and Y have no common parameters), as well as two examples, are also provided. The paper finishes with some remarks.