2024 : 5 : 4
Mohammad Mahdavi

Mohammad Mahdavi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
Faculty: Science
Address:
Phone: 01135302491

Research

Title
An investigation of the effects of plasma-heating on the resistive-driven filamentation modes
Type
JournalPaper
Keywords
Nernst effect Filamentation Resistive mode Fast ignition Temperature anisotropy
Year
2021
Journal CHINESE JOURNAL OF PHYSICS
DOI
Researchers Henghameh Khanzadeh ، Mohammad Mahdavi

Abstract

In the field of fast ignition schemes, it is possible to heat the plasma during the injection of the relativistic electron beams. This might be strongly effective in the self-generated magnetic fields and divergence of the relativistic electron beams in the transport process. In this paper, the effects of plasma heating, J × B pinching, and Nernst (arising from the hot electrons flux) on the resistive filamentation modes in a magnetized anisotropic plasma were investigated. Results showed a significant reduction of the instability growth rate. Findings suggested that the reconnection and convection of the magnetic field lines could change the intensity of the collimation coefficient of the electron beams. In addition, the instability could exist in a safe mode even when the plasma entered an isotropic condition, compared to the temperature anisotropy-driven instabilities, where this could be affected by the relativistic electrons mean velocity.