2024 : 11 : 22
Mohammad Javad Azizipour

Mohammad Javad Azizipour

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex: 0/00
Faculty: Faculty of Technology and Engineering
Address: University of Mazandaran
Phone: 01135305111

Research

Title
A Framework for Super-Resolution of Scalable Video via Sparse Reconstruction of Residual Frames
Type
Presentation
Keywords
Compressive sampling, sparse reconstruction, spatial scalable video, super-resolution, video streaming, reconnaissance and surveillance.
Year
2017
Researchers Mohammad Hossein Moghaddam ، Mohammad Javad Azizipour ، Saeed Vahidian ، Besma Smida

Abstract

This paper introduces a framework for superresolution of scalable video based on compressive sensing and sparse representation of residual frames in reconnaissance and surveillance applications. We exploit efficient compressive sampling and sparse reconstruction algorithms to super-resolve the video sequence with respect to different compression rates. We use the sparsity of residual information in residual frames as the key point in devising our framework. Moreover, a controlling factor as the compressibility threshold to control the complexity performance trade-off is defined. Numerical experiments confirm the efficiency of the proposed framework in terms of the compression rate as well as the quality of reconstructed video sequence in terms of PSNR measure. The framework leads to a more efficient compression rate and higher video quality compared to other state-of-the-art algorithms considering performance-complexity trade-offs.