2024 : 5 : 22
Morteza Ghorbanzadeh Ahangari

Morteza Ghorbanzadeh Ahangari

Academic rank: Associate Professor
Education: PhD.
Faculty: Faculty of Technology and Engineering
Phone: 35305107


Computational studies at the density functional theory (DFT) level about the surface functionalization of hexagonal monolayers by chitosan monomer
Graphene h-BN Chitosan DFT Adsorption
Journal Applied Surface Science
Researchers Javad Ebrahimi ، Morteza Ghorbanzadeh Ahangari ، Mohsen Jahanshahi


Theoretical investigations based on density functional theory have been carried out to understand the underlying interactions between the chitosan monomer and several types of hexagonal monolayers consisting of pristine and defected graphene and boron-nitride nanosheets. Based on the obtained results, it was found that the type of the interaction for all the systems is of non-covalent nature and the chitosan monomer physically interacts with the surface of mentioned nanostructures. The interaction strength was evaluated by calculating the adsorption energies for the considered systems and it was found that the adsorption of chitosan monomer accompanies by the release of about 0.67 and 0.66 eV energy for pristine graphene and h-BN monolayer, respectively. The role of structural defect has also been considered by embedding a Stone-Wales defect within the structure of mentioned monolayers and it was found that the introduced defect enhances the interactions between the chitosan monomer and nanostructures. The role of dispersion interactions has also been taken into account and it was found that these long-range interactions play the dominating role in the attachment of chitosan monomer onto the graphene sheet, while having strong contribution together with the electrostatic interactions for the stabilization of chitosan onto the surface of h-BN monolayer. For all the cases, the adsorption of chitosan monomer did not change the inherent electronic properties of the nanostructures based on the results of charge transfer analysis and energy gap calculations. The findings of the present work would be very useful in future investigations to explore the potential applications of these hybrid materials in materials science and bio-related fields.