Uric acid plays an important role in sustaining and improving sperm morphology, viability, and motility. It is known that SLC2A9 and ABCG2 protein are the main urate transporter and genetic variations in these genes could be associated with the levels of serum uric acid. This study aimed to investigate the association between single nucleotide polymorphisms (SNPs) SLC2A9-rs16890979, SLC2A9-rs3733591, ABCG2-rs2231142, and ABCG2-rs2231137 with male infertility. Additionally, the correlation of these SNPs with the uric acid level in seminal plasma of infertile men was examined. Subsequently, an in silico analysis was performed. In a case-control study, 193 infertile and 154 healthy controls were recruited. After semen sample collection, the uric acid level of seminal plasma was measured by a commercial kit. After genomic DNA extraction from sperm samples, SNPs genotyping was performed by PCR-RFLP method. Lastly, the effects of SNPs on the SLC2A9 and ABCG2 gene function were evaluated by bioinformatics tools. The genetic association study revealed that there are significant associations between rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations and increased risk of male infertility. Also, these variations were associated with oligozoospermia and teratozoospermia, and sometimes with asthenozoospermia. Also, we found that four studied SNPs could be associated with a decreased level of uric acid of seminal plasma in teratozoospermia and asthenozoospermia. Bioinformatic analysis revealed that the mentioned polymorphisms could affect molecular aspects of SLC2A9 and ABCG2 genes. In this preliminary study, the rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations could be considered as genetic risk factors for male infertility by interfering with the uric acid level of seminal plasma.