2024 : 11 : 21
Kourosh Nozari

Kourosh Nozari

Academic rank: Professor
ORCID: https://orcid.org/0000-0003-4368-5823
Education: PhD.
ScopusId: 9276301800
HIndex:
Faculty: Science
Address: Department of Theoretical Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
Phone: 01135302482

Research

Title
Quantum corrections to the accretion onto a Schwarzschild black hole in the background of quintessence
Type
JournalPaper
Keywords
Black Holes, Quintessence, Accretion
Year
2020
Journal The European Physical Journal C
DOI
Researchers Kourosh Nozari ، Milad Hajebrahimi ، sara Saghafi

Abstract

It is well known that quantum effectsmay lead to removal of the intrinsic singularity point of back holes. Also, the quintessence scalar field is a candidatemodel for describing late-time acceleration expansion. Accordingly, Kazakov and Solodukhin considered the existence of back-reaction of the spacetime due to the quantum fluctuations of the background metric to deform a Schwarzschild black hole, which led to a change of the intrinsic singularity of the black hole to a 2-sphere with a radius of the order of the Planck length. Also, Kiselev rewrote the Schwarzschild metric by taking into account the quintessence field in the background. In this study,we consider the quantum-corrected Schwarzschild black hole inspired by Kazakov–Solodukhin’s work, and the Schwarzschild black hole surrounded by quintessence deduced by Kiselev to study the mutual effects of quantum fluctuations and quintessence on the accretion onto the black hole. Consequently, the radial component of the 4-velocity and the proper energy density of the accreting fluid have a finite value on the surface of its central 2-sphere due to the presence of quantum corrections. Also, by comparing the accretion parameters in different kinds of black holes, we infer that the presence of a point-like electric charge in the spacetime is somewhat similar to some quantum fluctuations in the background metric.