2024 : 11 : 23
Jahan Bakhsh Raoof

Jahan Bakhsh Raoof

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Chemistry
Address: Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
Phone: 01135302392

Research

Title
A rapid synthesis of high surface area PdRu nanosponges: Composition-dependent electrocatalytic activity for formic acid oxidation
Type
JournalPaper
Keywords
Palladium–ruthenium Nanosponge Nanoparticle networks Methanol oxidation Green synthesis
Year
2017
Journal Journal of Energy Chemistry
DOI
Researchers Ehteram Hasheminejad ، Reza Ojani ، Jahan Bakhsh Raoof

Abstract

Here, PdRu nanoparticle networks (NPNs) with various compositions were synthesized through an inex- pensive method in water as a green solvent, at different ratios of the H 2 PdCl 4 and RuCl 3 precursors. This is a fast, room temperature and surfactant free strategy which is able to form high surface area metal nanosponges with a three-dimensional (3D) porous structure. The structure of as-prepared nanosponges was characterized using the techniques of field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). Then, the electrocatalytic activities of PdRu NPNs towards formic acid oxidation were examined by electrochemical measurements including CV, chronoamperometry, and electrochemical impedance spectroscopy (EIS). Based on studies, it was found that the current density of formic acid oxidation (FAO) is strongly dependent on the composition of PdRu NPNs. The best performance was realized for Pd 4 Ru 1 NPNs compared to monometallic Pd counterpart and other bimetallic NPNs which might be ascribed to the role of Ru in the decrease of CO adsorp- tion strength on the catalyst and consequently the priority of formic acid oxidation through the direct pathway. The Pd 4 Ru 1 NPNs also showed the maximum current density and stability in chronoampero- metric measurements. In addition, comparative studies were performed between as-prepared NPNs and CNTs-supported Pd nanoparticles (Pd NPs/CNTs). The present results demonstrated the unique structural advantages of NPNs compared to individual Pd NPs supported on the CNT which leads to the promising performance of NPNs as supportless catalysts for the oxidation of formic acid.