A sensitive and rapid method based on alcoholicassisted dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of citalopram in human plasma and urine samples was developed. The effects of six parameters (extraction time, stirring speed, pH, volume of extraction and disperser solvents, and ionic strength) on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Behnken design, respectively. According to Plackett–Burman design results, the volume of disperser solvent, stirring speed, and extraction time had no effect on the recovery of citalopram. The optimized condition was a mixture of 172 µL of 1-octanol as extraction solvent and 400 µL of methanol as disperser solvent, pH of 10.3 and 1% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 89.42%. The detection limit of citalopram in human plasma was obtained 4 ng/ mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 5.4 ng/mL with the linearity in the range of 10–2000 ng/mL. Relative standard deviations for inter- and intraday extraction of citalopram were less than 7% for five measurements. The proposed method was successfully implemented for the determination of citalopram in human plasma and urine samples