Alcoholic-assisted dispersive liquid–liquid microextraction method (AADLLME) is used for the extraction, purification, and determination of bisphenol A in water samples by HPLC-UV. 1-octanol and methanol were selected as extraction and dispersive solvents of AA-DLLME procedure. The effects of several parameters of the AADLLME procedure (such as volume of extraction and dispersive solvents, amount of salt in sample solution, and extraction time) were investigated by a full factorial design. Then, the levels of significant factors were optimized using a central composite facecentered. The optimum conditions were obtained at 158 μL of extraction solvent, 500 μL of dispersive solvent, 1 min extraction time, and addition of 22% (w/v) of NaCl to the sample solution. Under optimum condition, the extraction recovery and the enrichment factor were determined, which were 91% and 65%, respectively. At these conditions, the limit of detection and the linearity were 0.10 and 1–100 μg L−1, respectively. The relative standard deviations for intra- and inter-day of extraction of bisphenol A (BPA) were 6.98% and 9.80%, respectively (for five measurements). Finally, the method was successfully applied for the determination of BPA in environmental water samples. In conclusion, it can be stated that the applied method is fast, simple, and environmentally friendly