1403/01/10
محمد رضا حاج محمدی

محمد رضا حاج محمدی

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده شیمی
نشانی:
تلفن: 01135302350

مشخصات پژوهش

عنوان
Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples
نوع پژوهش
JournalPaper
کلیدواژه‌ها
High performance liquid chromatography;Non-ionic surfactant; Phthalate esters; Solvent bar microextraction; Water samples
سال
2018
مجله Journal of Chromatography
شناسه DOI
پژوهشگران samereh Ranjbar ، Mohammad Reza Hadjmohammadi

چکیده

The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC–UV). Under the optimum conditions, linearity was observed in the range of 1–800 ng mL−1 for dimethylphthalate (DMP) and 0.5–800 ng mL−1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL−1 and 0.04–0.1 ng mL−1, respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL−1 of PEs were 1.8–2.1% and 2.1–2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples.