Magnetic properties of root, bark, and leaf of mangrove (Avicenna marina) and sediment were determined for pollution assessment at three locations in the northern coast of the Persian Gulf. The study revealed that the sources of the particles deposited on leaf surfaces can be discriminated via saturation isothermal remanent magnetization (SIRM) values and heavy metal. However, different factors including wind direction, size of the magnetic particles and crown density, play a role using SIRM for biomonitoring of atmospheric particulate matter. For leaves, the significant correlations between SIRM and leaf elemental contents indicated that the deposited particles on their surface mainly have geogenic sources. The magnetic analyses revealed that leaves are more suitable than bark for monitoring atmospheric pollution using mangrove trees due to the effect of different factors including dense crown of trees, washing of tree trunk by sea waves, and elements translocation from roots and sediments. Instead, the positive and significant correlation between the SIRM values for sediments and mangrove roots, and no or negative correlation between sediments and roots with barks and leaves indicates that the magnetic properties of the sediments and mangrove roots are suitable indicators of pollution in aquatic environment.