2024 : 11 : 21
Doost Ali Mojdeh

Doost Ali Mojdeh

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Mathematical Sciences
Address: Department of Mathematics, University of Mazandaran, Babolsar, Iran
Phone: 011-35302448

Research

Title
Perfect Roman f3g-domination of graphs
Type
Presentation
Keywords
Roman {3}-domination, Perfect Roman {3}-domination
Year
2021
Researchers Doost Ali Mojdeh ، Parvin Jalilolghadr

Abstract

For a graph $G = (V, E)$ with $V=V(G)$ and $E=E(G)$, a perfect Roman $\{3\}$-dominating function is a function $f : V \rightarrow \{0, 1, 2, 3\}$ having the property that $3\leq\sum_{u\in N_G[v]} f(u)\leq 4$, if $f (v) \in\{ 0,1\}$ for any vertex $v\in G$. The weight of a perfect Roman $\{3\}$-dominating function $f$ is the sum $f (V) =\sum_{v\in V(G)} f(v)$ and the minimum weight of a perfect Roman $\{3\}$-dominating function on $G$ is the perfect Roman $\{3\}$-domination number of $G$, denoted by $\gamma_{\{PR3\}}(G)$. In this manuscript we study the perfect Roman $\{3\}$-domination of some graphs.