2024 : 11 : 21
Doost Ali Mojdeh

Doost Ali Mojdeh

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Mathematical Sciences
Address: Department of Mathematics, University of Mazandaran, Babolsar, Iran
Phone: 011-35302448

Research

Title
Revisiting $k$-tuple Dominating Sets with Emphasis on Small Values of $k$
Type
JournalPaper
Keywords
Double domination number, Double Slater number, NP-complete, Tree, k-tuple domatic partition, Full graphs
Year
2022
Journal Bulletin of the Malaysian Mathematical Sciences Society
DOI
Researchers Babak Samadi ، Nasrin Soltankhah ، Doost Ali Mojdeh

Abstract

For any graph G of order n with degree sequence d1 ≥ · · · ≥ dn, we define the double Slater number s×2(G) as the smallest integer t such that t + d1 + · · · + dt−e ≥ 2n − p in which e and p are the number of end-vertices and penultimate vertices of G, respectively. We show that γ×2(G) ≥ s×2(G), where γ×2(G) is the wellknown double domination number of a graph G with no isolated vertices. We prove that the problem of deciding whether the equality holds for a given graph is NPcomplete even when restricted to 4-partite graphs. We also prove that the problem of computing γ×2(G) is NP-hard even for comparability graphs of diameter two. Some results concerning these two parameters are given in this paper improving and generalizing some earlier results on double domination in graphs. We give an upper bound on the k-tuple domatic number of graphs with characterization of all graphs attaining the bound. Finally, we characterize the family of all full graphs, leading to a solution to an open problem given in a paper by Cockayne and Hedetniemi (Networks 7: 247–261, 1977).