The binomial exponential 2 (BE2) distributionwas proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan’s air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.