2024 : 4 : 30

A.A.R Darzi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
Faculty: Faculty of Technology and Engineering
Address:
Phone: 01135305130

Research

Title
Interactions between hybrid nanosized particles and convection melting inside an enclosure with partially active walls: 2Dlattice Boltzmann‐based numerical investigation
Type
JournalPaper
Keywords
hybrid nanofluid, lattice Boltzmann method, melting, natural convection, partially heated cavity, price
Year
2021
Journal Heat Transfer
DOI
Researchers A.A.R Darzi ، Mohammad Hassan Shojaeefard ، Mahmoud Jourabian

Abstract

The ice melting is investigated inside a square cavity with two isothermally partially active walls. The concept of dispersing hybrid alumina–Cu nanoparticles and hybrid silica–multiwalled carbon nanotubes (MWCNTs) nanoparticles is recommended for thermal performance enhancement in this thermal energy storage (TES) system. The two‐dimensional explicit lattice Boltzmann convection melting scheme in the singlephase model is applied to account for the natural convection flow induced in the melt region and evolution of the solid–liquid interface. The complete melting time for the pure phase change material (PCM) using case (II) is 33.3% lower compared with other cases. If the price of hybrid Al2O3–Cu nanoparticles and heat storage capacity is important, the full melt time diminishes by 16.6% with a volume fraction of 0.01 in case (II). Once hybrid silica–MWCNT nanoparticles with a volume fraction of 0.01 are utilized inside case (II), the lowest charging time is achieved. The complete melting time abates by 23.66% in contrast to the pure PCM melting. The use of single/hybrid nanoparticles to enhance the PCM melting is not necessarily economical as efficient positions of active parts could further lessen the charging time. The efficiency of hybrid nanoparticles is linked to the type and weight proportions of nanoparticles, and positions of thermally active parts.